Mentari Pagi

Blog ini dibuat untuk memenuhi tugas dalam salah satu mata kuliah saya.

  • RSS
  • Skype
  • Facebook
  • Yahoo

Pada artikel “klasifikasi mesin listrik”, Motor listrik termasuk kedalam kategorimesin listrik dinamis dan merupakan sebuah perangkat elektromagnetik yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya, memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan, dll di industri dan digunakan juga pada peralatan listrik rumah tangga (seperti: mixer, bor listrik,kipas angin). 

Anda dapat melihat animasi prinsip kerja motor DC ini di sini.

Motor listrik kadangkala disebut “kuda kerja” nya industri, sebab diperkirakan bahwa motor-motor menggunakan sekitar 70% beban listrik total di industri. 

Mekanisme kerja untuk seluruh jenis motor listrik secara umum sama (Gambar 1), yaitu: 
• Arus listrik dalam medan magnet akan memberikan gaya.
• Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan. 
• Pasangan gaya menghasilkan tenaga putar/ torsi untuk memutar kumparan. 
• Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan. 

Dalam memahami sebuah motor listrik, penting untuk mengerti apa yang dimaksud dengan beban motor. Beban mengacu kepada keluaran tenaga putar/torsi sesuai dengan kecepatan yang diperlukan. Beban umumnya dapat dikategorikan kedalam tiga kelompok: 
 Beban torsi konstan, adalah beban dimana permintaan keluaran energinya bervariasi dengan kecepatan operasinya, namun torsi nya tidak bervariasi. Contoh beban dengan torsi konstan adalah conveyors, rotary kilns, dan pompa displacement konstan. 
 Beban dengan torsi variabel, adalah beban dengan torsi yang bervariasi dengan kecepatan operasi. Contoh beban dengan torsi variabel adalah pompa sentrifugal dan fan (torsi bervariasi sebagai kwadrat kecepatan). 
 Beban dengan energi konstan, adalah beban dengan permintaan torsi yang berubah dan berbanding terbalik dengan kecepatan. Contoh untuk beban dengan daya konstan adalah peralatan-peralatan mesin. 


Gambar 1. Prinsip Dasar Kerja Motor Listrik.

JENIS MOTOR LISTRIK

Bagian ini menjelaskan tentang dua jenis utama motor listrik: motor DC dan motor AC. Motor tersebut diklasifikasikan berdasarkan pasokan input, konstruksi, dan mekanisme operasi, dan dijelaskan lebih lanjut dalam bagan dibawah ini.


Gambar 2. Klasifikasi Motor Listrik.

1. Motor DC/Arus Searah
Motor DC/arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/direct-unidirectional. Motor DC digunakan pada penggunaan khusus dimana diperlukan penyalaan torsi yang tinggi atau percepatan yang tetap untuk kisaran kecepatan yang luas. 
Gambar 3 memperlihatkan sebuah motor DC yang memiliki tiga komponen utama:
 Kutub medan. Secara sederhada digambarkan bahwa interaksi dua kutub magnet akan menyebabkan perputaran pada motor DC. Motor DC memiliki kutub medan yang stasioner dan dinamo yang menggerakan bearing pada ruang diantara kutub medan. Motor DC sederhana memiliki dua kutub medan: kutub utara dan kutub selatan. Garis magnetik energi membesar melintasi bukaan diantara kutub-kutub dari utara ke selatan. Untuk motor yang lebih besar atau lebih komplek terdapat satu atau lebih elektromagnet. Elektromagnet menerima listrik dari sumber daya dari luar sebagai penyedia struktur medan. 
 Dinamo. Bila arus masuk menuju dinamo, maka arus ini akan menjadi elektromagnet. Dinamo yang berbentuk silinder, dihubungkan ke as penggerak untuk menggerakan beban. Untuk kasus motor DC yang kecil, dinamo berputar dalam medan magnet yang dibentuk oleh kutub-kutub, sampai kutub utara dan selatan magnet berganti lokasi. Jika hal ini terjadi, arusnya berbalik untuk merubah kutub-kutub utara dan selatan dinamo. 
 Kommutator. Komponen ini terutama ditemukan dalam motor DC. Kegunaannya adalah untuk membalikan arah arus listrik dalam dinamo. Kommutator juga membantu dalam transmisi arus antara dinamo dan sumber daya. 


Gambar 3. Motor DC.

Keuntungan utama motor DC adalah kecepatannya mudah dikendalikan dan tidak mempengaruhi kualitas pasokan daya. Motor DC ini dapat dikendalikan dengan mengatur: 
 Tegangan dinamo – meningkatkan tegangan dinamo akan meningkatkan kecepatan.
 Arus medan – menurunkan arus medan akan meningkatkan kecepatan. 

Motor DC tersedia dalam banyak ukuran, namun penggunaannya pada umumnya dibatasi untuk beberapa penggunaan berkecepatan rendah, penggunaan daya rendah hingga sedang, seperti peralatan mesin dan rolling mills, sebab sering terjadi masalah dengan perubahan arah arus listrik mekanis pada ukuran yang lebih besar. Juga, motor tersebut dibatasi hanya untuk penggunaan di area yang bersih dan tidak berbahaya sebab resiko percikan api pada sikatnya. Motor DC juga relatif mahal dibanding motor AC. 

Hubungan antara kecepatan, flux medan dan tegangan dinamo ditunjukkan dalam persamaan berikut: 

Gaya elektromagnetik: E = KΦN 

Torsi: T = KΦIa

Dimana: 
E =gaya elektromagnetik yang dikembangkan pada terminal dinamo (volt) 
Φ = flux medan yang berbanding lurus dengan arus medan 
N = kecepatan dalam RPM (putaran per menit) 
T = torsi electromagnetik 
Ia = arus dinamo 
K = konstanta persamaan 

Jenis-Jenis Motor DC/Arus Searah

a. Motor DC sumber daya terpisah/ Separately Excited, Jika arus medan dipasok dari sumber terpisah maka disebut motor DC sumber daya terpisah/separately excited. 

b. Motor DC sumber daya sendiri/ Self Excited: motor shunt. Pada motor shunt, gulungan medan (medan shunt) disambungkan secara paralel dengan gulungan dinamo (A) seperti diperlihatkan dalam gambar 4. Oleh karena itu total arus dalam jalur merupakan penjumlahan arus medan dan arus dinamo. 

Gambar 4. Karakteristik Motor DC Shunt.

Berikut tentang kecepatan motor shunt (E.T.E., 1997): 
• Kecepatan pada prakteknya konstan tidak tergantung pada beban (hingga torsi tertentu setelah kecepatannya berkurang, lihat Gambar 4) dan oleh karena itu cocok untuk penggunaan komersial dengan beban awal yang rendah, seperti peralatan mesin. 
• Kecepatan dapat dikendalikan dengan cara memasang tahanan dalam susunan seri dengan dinamo (kecepatan berkurang) atau dengan memasang tahanan pada arus medan (kecepatan bertambah). 

c. Motor DC daya sendiri: motor seri. Dalam motor seri, gulungan medan (medan shunt) dihubungkan secara seri dengan gulungan dinamo (A) seperti ditunjukkan dalam gambar 5. Oleh karena itu, arus medan sama dengan arus dinamo.

Berikut tentang kecepatan motor seri (Rodwell International Corporation, 1997; L.M. Photonics Ltd, 2002): 
• Kecepatan dibatasi pada 5000 RPM.
• Harus dihindarkan menjalankan motor seri tanpa ada beban sebab motor akan mempercepat tanpa terkendali. 
Motor-motor seri cocok untuk penggunaan yang memerlukan torque penyalaan awal yang tinggi, seperti derek dan alat pengangkat hoist (lihat Gambar 5). 

Gambar 5. Karakteristik Motor DC Seri.

d. Motor DC Kompon/Gabungan.
Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dinamo (A) seperti yang ditunjukkan dalam gambar 6. Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini. Contoh, penggabungan 40-50% menjadikan motor ini cocok untuk alat pengangkat hoist dan derek, sedangkan motor kompon yang standar (12%) tidak cocok (myElectrical, 2005).

Gambar 6. Karakteristik Motor DC Kompon.

2. Motor AC/Arus Bolak-Balik

Motor AC/arus bolak-balik menggunakan arus listrik yang membalikkan arahnya secara teratur pada rentang waktu tertentu. Motor listrik AC memiliki dua buah bagian dasar listrik: "stator" dan "rotor" seperti ditunjukkan dalam Gambar 7. 

Stator merupakan komponen listrik statis. Rotor merupakan komponen listrik berputar untuk memutar as motor. Keuntungan utama motor DC terhadap motor AC adalah bahwa kecepatan motor AC lebih sulit dikendalikan. Untuk mengatasi kerugian ini, motor AC dapat dilengkapi dengan penggerak frekwensi variabel untuk meningkatkan kendali kecepatan sekaligus menurunkan dayanya. Motor induksi merupakan motor yang paling populer di industri karena kehandalannya dan lebih mudah perawatannya. Motor induksi AC cukup murah (harganya setengah atau kurang dari harga sebuah motor DC) dan juga memberikan rasio daya terhadap berat yang cukup tinggi (sekitar dua kali motor DC).

Jenis-Jenis Motor AC/Arus Bolak-Balik

a. Motor sinkron. Motor sinkron adalah motor AC yang bekerja pada kecepatan tetap pada sistim frekwensi tertentu. Motor ini memerlukan arus searah (DC) untuk pembangkitan daya dan memiliki torque awal yang rendah, dan oleh karena itu motor sinkron cocok untuk penggunaan awal dengan beban rendah, seperti kompresor udara, perubahan frekwensi dan generator motor. Motor sinkron mampu untuk memperbaiki faktor daya sistim, sehingga sering digunakan pada sistim yang menggunakan banyak listrik. 

Komponen utama motor sinkron adalah (Gambar 7):
 Rotor. Perbedaan utama antara motor sinkron dengan motor induksi adalah bahwa rotor mesin sinkron berjalan pada kecepatan yang sama dengan perputaran medan magnet. Hal ini memungkinkan sebab medan magnit rotor tidak lagi terinduksi. Rotor memiliki magnet permanen atau arus DC-excited, yang dipaksa untuk mengunci pada posisi tertentu bila dihadapkan dengan medan magnet lainnya. 
 Stator. Stator menghasilkan medan magnet berputar yang sebanding dengan frekwensi yang dipasok. 

Motor ini berputar pada kecepatan sinkron, yang diberikan oleh persamaan berikut (Parekh, 2003): 

Ns = 120 f / P 

Dimana: 
f = frekwensi dari pasokan frekwensi 
P= jumlah kutub 

Gambar 7. Motor Sinkron.

b. Motor induksi. Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah dan mudah didapat, dan dapat langsung disambungkan ke sumber daya AC.

Komponen Motor induksi memiliki dua komponen listrik utama (Gambar 8):
 Rotor. Motor induksi menggunakan dua jenis rotor: 
- Rotor kandang tupai terdiri dari batang penghantar tebal yang dilekatkan dalam petak-petak slots paralel. Batang-batang tersebut diberi hubungan pendek pada kedua ujungnya dengan alat cincin hubungan pendek. 
- Lingkaran rotor yang memiliki gulungan tiga fase, lapisan ganda dan terdistribusi. Dibuat melingkar sebanyak kutub stator. Tiga fase digulungi kawat pada bagian dalamnya dan ujung yang lainnya dihubungkan ke cincin kecil yang dipasang pada batang as dengan sikat yang menempel padanya. 
 Stator. Stator dibuat dari sejumlah stampings dengan slots untuk membawa gulungan tiga fase. Gulungan ini dilingkarkan untuk sejumlah kutub yang tertentu. Gulungan diberi spasi geometri sebesar 120 derajat .

Klasifikasi motor induksi 

Motor induksi dapat diklasifikasikan menjadi dua kelompok utama (Parekh, 2003): 
 Motor induksi satu fase. Motor ini hanya memiliki satu gulungan stator, beroperasi dengan pasokan daya satu fase, memiliki sebuah rotor kandang tupai, dan memerlukan sebuah alat untuk menghidupkan motornya. Sejauh ini motor ini merupakan jenis motor yang paling umum digunakan dalam peralatan rumah tangga, seperti kipas angin, mesin cuci dan pengering pakaian, dan untuk penggunaan hingga 3 sampai 4 Hp. 
 Motor induksi tiga fase. Medan magnet yang berputar dihasilkan oleh pasokan tiga fase yang seimbang. Motor tersebut memiliki kemampuan daya yang tinggi, dapat memiliki kandang tupai atau gulungan rotor (walaupun 90% memiliki rotor kandang tupai); dan penyalaan sendiri. Diperkirakan bahwa sekitar 70% motor di industri menggunakan jenis ini, sebagai contoh, pompa, kompresor, belt conveyor, jaringan listrik , dan grinder. Tersedia dalam ukuran 1/3 hingga ratusan Hp. 

Gambar 8. Motor Induksi.

Kecepatan motor induksi 

Motor induksi bekerja sebagai berikut, Listrik dipasok ke stator yang akan menghasilkan medan magnet. Medan magnet ini bergerak dengan kecepatan sinkron disekitar rotor. Arus rotor menghasilkan medan magnet kedua, yang berusaha untuk melawan medan magnet stator, yang menyebabkan rotor berputar. Walaupun begitu, didalam prakteknya motor tidak pernah bekerja pada kecepatan sinkron namun pada “kecepatan dasar” yang lebih rendah. Terjadinya perbedaan antara dua kecepatan tersebut disebabkan adanya “slip/geseran” yang meningkat dengan meningkatnya beban. Slip hanya terjadi pada motor induksi. Untuk menghindari slip dapat dipasang sebuah cincin geser/ slip ring, dan motor tersebut dinamakan “motor cincin geser/slip ring motor”. 

Persamaan berikut dapat digunakan untuk menghitung persentase slip/geseran(Parekh, 2003): 

% Slip = (Ns – Nb)/Ns x 100

Dimana: 
Ns = kecepatan sinkron dalam RPM 
Nb = kecepatan dasar dalam RPM

Hubungan antara beban, kecepatan dan torsi


Gambar 9. Grafik Torsi vs Kecepatan Motor Induksi.

Gambar 9 menunjukan grafik torsi vs kecepatan motor induksi AC tiga fase dengan arus yang sudah ditetapkan. Bila motor (Parekh, 2003): 
• Mulai menyala ternyata terdapat arus nyala awal yang tinggi dan torsi yang rendah (“pull-up torque”). 
• Mencapai 80% kecepatan penuh, torsi berada pada tingkat tertinggi (“pull-out torque”) dan arus mulai turun. 
• Pada kecepatan penuh, atau kecepatan sinkron, arus torsi dan stator turun ke nol.


http://dunia-listrik.blogspot.com/2008/12/motor-listrik.html

KABEL LISTRIK

Kabel listrik adalah media untuk menyalurkan energi listrik. Sebuah kabel listrik terdiri dari isolator dan konduktor. Isolator adalah bahan pembungkus kabel yang biasanya terbuat dari karet atau plastik, sedangkan konduktor terbuat dari serabut tembaga atau tembaga pejal.


Kemampuan hantar sebuah kabel listrik ditentukan oleh KHA (kemampuan hantar arus) yang dimilikinya dalam satuan Ampere. Kemampuan hantar arus ditentukan oleh luas penampang konduktor yang berada dalam kabel listrik. Sedangkan tegangan listrik dinyatakan dalam Volt, besar daya yang diterima dinyatakan dalam satuan Watt, yang merupakan perkalian dari :
“Ampere x Volt = Watt”
Pada tegangan 220 Volt dan KHA 10 Ampere, sebuah kabel listrik dapat menyalurkan daya sebesar 220V x 10A = 2200 Watt.

KABEL N.Y.A


Biasanya digunakan untuk instalasi rumah dan sistem tenaga. Dalam instalasi rumah digunakan ukuran 1,5 mm2 dan 2,5 mm2. Berinti tunggal, berlapis bahan isolasi PVC, dan seringnya untuk instalasi kabel udara. Kode warna isolasi ada warna merah, kuning, biru dan hitam. Kabel tipe ini umum dipergunakan di perumahan karena harganya yang relatif murah. Lapisan isolasinya hanya 1 lapis sehingga mudah cacat, tidak tahan air dan mudah digigit tikus.
Agar aman memakai kabel tipe ini, kabel harus dipasang dalam pipa/conduit jenis PVC atau saluran tertutup. Sehingga tidak mudah menjadi sasaran gigitan tikus, dan apabila ada isolasi yang terkelupas tidak tersentuh langsung oleh orang.




KABEL N.Y.M

Digunakan untuk kabel instalasi listrik rumah atau gedung dan sistem tenaga. Kabel NYM berinti lebih dari 1, memiliki lapisan isolasi PVC (biasanya warna putih atau abu-abu), ada yang berinti 2, 3 atau 4. Kabel NYM memiliki lapisan isolasi dua lapis, sehingga tingkat keamanannya lebih baik dari kabel NYA (harganya lebih mahal dari NYA). Kabel ini dapat dipergunakan dilingkungan yang kering dan basah, namun tidak boleh ditanam.

KABEL N.Y.Y

Memiliki lapisan isolasi PVC (biasanya warna hitam), ada yang berinti 2, 3 atau 4. Kabel NYY dieprgunakan untuk instalasi tertanam (kabel tanah), dan memiliki lapisan isolasi yang lebih kuat dari kabel NYM (harganya lebih mahal dari NYM). Kabel NYY memiliki isolasi yang terbuat dari bahan yang tidak disukai tikus.

SISTEM PENYALURAN TENAGA LISTRIK

            Bagian-bagian yang terpenting untuk penyaluran tenaga lsitrik antaran lain sebagai berikut :
1.      Sumber Tenaga Listrik
Disini sumber tenaga untuk system jaringan yang kecil diambil dari pembangkit-pembangkit listrik ( misalnya, PLTA, PLTD dll ).
Untuk Sistem jaringan yang besar sumber tenaga listrik diambil; dari Gardu Induk, karena pada Gardu Induk tempat terkumpulnya tenaga listrik dari pembangkit-pembangkit listrik.

2.      Jaringan Distribusi Tegangan Tinggi
Disini dibagi menjadi dua macam :
a.       Teganan Tinggi ( 30 Kv, 70 Kv, 150 Kv )
b.      Tegangan Menengah  ( 6 Kv, 20 Kv )
Jaringan Tegangan Tinggi  ini dipakai untuk menghubungkan antara Gardu Induk dengan Gardu IndukPembangkit dengan Gardu Induk.
Jaringan Tegangan Menengah untuk menghubungkan dari Gardu Induk ke Gardu Bagi.

3.      Gardu Induk
Hasil tenaga listrik dari pembangkit-pembangkit dikumpulkan pada Gardu Induk, dari Gardu Induk ini tenaga listrik akan dibagi-bagikan ke Gardu Induk lain atau ke Gardu Hubung.

4.      Gardu Hubung
Tenaga listrik yang ada di Gardu Induk dibagi-bagikan ke Gardu Hubung, disini Gardu Hubung berfungsi membagi-bagikan ke Gardu Distribusi, biasanya dengan tegangan menengah.



5.      Gardu Distrubusi
Tegangan menengah dari Gardu Hubungan tersebut sebelum dibagikan ke konsumen diturunkan lebih dahulu di Gardu Distribusi.

6.      Jaring Distribusi Tegangan Rendah
Tegangannya sama dengan tegangan pada konsumen / pamakai.
Jaringan ini untuk menyalurkan tenaga listrik dari Gardu Pembagi ke Pemakai / Konsumen.

http://fendiramadhan76.blogspot.com/2013/01/jenis-jenis-kabel-dan-fungsinya.html

RANGKAIAN PENGENDALI DAN RANGKAIAN DAYA MOTOR

 

Syarat utama seorang teknisi adalah harus dapat membaca rangkaian pengendali dan rangkaian daya (Power). Apabila kedua rangkaian ini sudah dipahami dan dimengerti maka teknisi sudah bisa melaksanakan pengawatan rangkaian motor pengalih daya untuk berbagai jenis operasi pengendali.Dan sekaligus teknisi akan handal dalam mengoperasikan peralatan pengalih daya tersebut. 

Berikut ini akan diberikan beberapa contoh mengoperasikan peralatan pengalih daya tegangan rendah untuk jenis operasi yang sering digunakan oleh dunia industri. 

Rangkaian Motor 3 fasa Mesin Crane




Prosedur mengoperasikan:
1.        MCB di set pada posisi „ON“ dengan cara menaikkan lidah MCB ke atas
2.        Lakukan pemilihan menentukan arah putaran Motor 3 Fasa dengan merubah posisi „SELEKTOR SWITCH (Saklar Pemilih) pada posisi Forward (For)
3.        Tekan tombol RUN maka Motor akan berputar maju (Forward) dan ditandai dengan menyala lampu merah
4.        Dan apabila menekan tombol JOG maka Motor akan berputar maju sesaat selama tombol ditekan dan ditandai dengan menyala lampu merah
5.        Apabila menginginkan Motor berputar mundur (Reverse) maka terlebih dahulu tekan tombol „STOP“ kemudian pindahkan saklar „SELEKTOR SWITCH“ pada posisi Reverse (Rev)
6.        Tekan tombol RUN maka Motor akan berputar mundur (Reverse) dan ditandai dengan menyala lampu merah
7.        Dan apabila menekan tombol JOG maka Motor akan berputar mundur sesaat selama tombol ditekan dan ditandai dengan menyala lampu merah
8.        Limit Switch berfungsi untuk pembatas arah gerak mesin forward dan reverse agar tidak mencapai batas tak terhingga
9.        Untuk mematikan Motor 3 Fasa, tekan tombol „STOP“


Kejadian khusus:

1.        Apabila terjadi hubung singkat (short Circuit) maka MCB akan trip. Untuk mengaktifkan kembali reset ke posisi „ON“
         2.        Dan bila terjadi beban lebih maka Thermal Overload Relay akan „Trip“ dengan
               ditandai menyala lampu warna kuning. Dan untuk mengaktifkan kembali tekan 
              tombol reset


Rangkaian Motor 3 fasa dengan Kontrol Permukaan

Prosedur mengoperasikan Motor Listrik 3 fasa dengan kontrol permukaan:

1.      MCB di set pada posisi „ON“ dengan cara menaikkan lidah MCB ke atas
2.      Pada saat Bak penampung (Reservoir) kosong maka kedua Float Switch (Saklar permukaan) Float Switch UP dan Float Switch DOWN dalam keadaan tertutup (Normally Close)
3.      Tekan tombol „START-STOP“ untuk tekanan pertama maka Motor 3 Fasa bekerja dalam rangkaian Bintang (Y), dengan ditandai menyala lampu indikator warna merah
4.      Setelah beberapa detik sesuai dengan pengesetan Time Delay Relay maka Motor 3 Fasa bekerja dalam hubungan Delta (D). Motor mengisi Bak penampung
5.      Pada saat Air telah memenuhi Bak penampung maka Float Switch UP membuka dan Motor 3 Fasa berhenti
6.      Setelah Air surut mencapai batas Float Switch Down maka Motor 3 Fasa bekerja kembali
7.      Untuk mematikan Motor 3 Fasa, tekan tombol „START-STOP“ untuk tekanan kedua

Kejadian khusus:

1.    Apabila terjadi hubung singkat (short Circuit) maka MCB akan trip. Untuk mengaktifkan kembali reset ke posisi „ON“
         2.      Dan bila terjadi beban lebih maka Thermal Overload Relay akan „Trip“ dengan 
              ditandai menyala lampu warna kuning. Dan untuk mengaktifkan kembali tekan 
              tombol reset


Rangkaian Motor 3 Fasa RUN-JOGGING

1. Run-jogging motor 3 fasa






Prosedur mengoperasikan:

1.   MCB di set pada posisi „ON“ dengan cara menaikkan lidah MCB ke atas
2.   Tekan tombol „RUN“ maka Motor 3 Fasa akan berputar Runing (maju), lampu indikator warna merah menyala
3.   Bila tombol tekan „JOG“ ditekan maka Motor 3 Fasa berputar sesaat selama tombol ditekan (Jogging)
4.   Dan bila dilepas maka Motor 3 Fasa berhenti
5.   Untuk menjalankan Running kembali tekan tombol „RUN“
6.   Untuk mematikan rangkaian tekan tombol „STOP“

Kejadian khusus:

1.      Apabila terjadi hubung singkat (short Circuit) maka MCB akan trip. Untuk mengaktifkan kembali reset ke posisi „ON“
         2.      Dan bila terjadi beban lebih maka Thermal Overload Relay akan „Trip“ dengan  
              ditandai menyala lampu warna kuning. Dan untuk mengaktifkan kembali tekan 
              tombol reset  


Rangkaia Motor 3 fasa Putar Kanan-Kiri ( FORWARD-REVERSE)

1.forward-reverse motor 3 fasa



Prosedur mengoperasikan:

1.   MCB diubah pada posisi „ON“ dengan cara menaikkan lidah MCB ke atas
2.   Tekan tombol „FOR“ maka Motor 3 Fasa akan berputar ke „Kanan“, lampu indikator menyala merah
3.   Apabila menginginkan Motor berputar ke „Kiri“ maka matikan lebih dahulu rangkaian dengan menekan tombol „STOP“
4.   Tekan tombol „REV“ maka Motor 3 Fasa akan berputar ke „Kiri“, lampu indikator hijau menyala
5.   Untuk mematikan Motor 3 Fasa, tekan tombol „STOP“

Kejadian khusus:

1.   Bila tombol „FOR“ dan tombol „REV“ ditekan secara bersamaan maka salah satu tombol yang lebih awal menekan akan bekerja lebih dahulu, karena kecepatan menekan antara kedua tombol mempunyai jarak waktu 0.02 detik
2.   Pada saat Motor 3 Fasa sedang berputar ke „kanan“ maka apabila tombol „REV“ ditekan tidak akan dapat mengoperasikan motor berputar ke „kiri“
3.   Apabila terjadi short Circuit maka MCB akan trip. Untuk mengaktifkan kembali reset ke posisi „ON“
         4.   Demikian juga bila terjadi beban lebih maka Thermal Overload Relay akan „Trip“ 
            dengan ditandai menyala lampu kuning. Dan untuk mengaktifkan kembali tekan 
            tombol reset
  
Rangkaian Motor 3 fasa Forward-Severs ( Putar kana-kiri) Otomatis
Prosedur mengoperasikan Forward-Severs ( Putar kana-kiri) otomatis:

1.      MCB di set pada posisi „ON“ dengan cara menaikkan lidah MCB ke atas
2.      Tekan tombol „START-STOP“ untuk tekanan ke 1 maka Motor 3 Fasa bekerja dengan arah putaran maju (Forward) yang ditandai lampu indikator menyala berwarna merah. Setelah beberapa detik sesuai dengan pengesetan Time Delay Relay (T1) maka Motor 3 Fasa mati dan T2 bekerja untuk menunda waktu
3.      Setelah Delay T2 habis maka Motor 3 Fasa berputar mudur (Reverse) yang ditandai dengan menyala lampu warna hijau dan T3 bekerja menunda waktu sesuai pengesetan
4.      Apabila Setting T3 telah habis maka Motor 3 Fasa mati, dan T4 bekerja untuk menunda waktu
5.      Setelah Delay T4 habis maka Motor 3 Fasa kembali berputar maju (Forward). Demikian seterusnya
6.      Untuk mematikan Motor 3 Fasa, tekan tombol „START-STOP“. Untuk tekanan ke 2

Kejadian khusus:

1.        Apabila  rangkaian Putar kanan-kiri initerjadi hubung singkat (short Circuit) maka MCB akan trip. Untuk mengaktifkan kembali reset ke posisi „ON“
        2.        Dan bila terjadi beban lebih maka Thermal Overload Relay akan „Trip“ dengan 
              ditandai menyala lampu berwarna kuning. Dan untuk mengaktifkan kembali tekan 
              tombol reset


Rangkaian Moror 3 fasa Starting Y-D  Otomatis (Bintang-Delta)
1.    Starting Y-D  Otomatis (Bintang-Delta)
Prosedur mengoperasikan:



1.      MCB di set pada posisi „ON“ dengan cara menaikkan lidah MCB ke atas
2.      Tekan tombol „START“ maka Motor 3 Fasa bekerja dalam hubungan Bindatang ( Y), dengan ditandai lampu indikator warna merah menyala
3.      Setelah beberapa detik sesuai dengan pengesetan Time Delay Relay maka Motor 3 Fasa bekerja dalam hubungan Delta ( D) dengan ditandai lampu indikator warna hijau menyala
4.      Untuk mematikan Motor Listrik 3 Fasa, tekan tombol „STOP“

Kejadian khusus:

1.      Apabila terjadi hubung singkat (short Circuit) maka MCB akan trip. Untuk   mengaktifkan kembali reset ke posisi „ON“
          2.      Dan bila terjadi beban lebih maka Thermal Overload Relay akan „Trip“ dengan 
               ditandai menyala lampu warna kuning. Dan untuk mengaktifkan kembali tekan 
               tombol reset

http://k3titl-smknesaba.blogspot.com/2010/11/rangkaian-pengendali-dan-rangkaian-daya.html